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An efficient method for solution of the nonlinear problem of combined heat transfer based on the 

simultaneous use of zonal and finite-difference approximations of heat transfer equations on different-scale 

grids within the framework of a unified inexplicit iteration scheme is proposed. The efficiency and accuracy 

of the approach proposed are demonstrated on a test example. 

Simultaneous heat transfer by means of radiation, heat conduction, and mass transport is a distinctive 

feature of problems of the combined heat transfer. Another peculiarity of applied problems of the type consists in 

the substantial differences in the spatial scales of the regions where calculations are carried out: heating of stocks, 

radiation pipes in the working space of furnaces, etc. To date, a number of efficient methods for the approximation 

of particular heat transfer equations have been developed. The finite-difference method is frequently used for the 

solution of heat conduction equations [1 ]. The zonal method is successfully used for calculation of the radiative 

heat transfer [2, 3 ], and equations of energy conservation and hydrodynamics are efficiently solved by the control 

volume method [3 ]. The finite-element method has received wide recognition in CAD systems [4 ]. In problems 

where the processes under investigation are induced by physical processes of different natures, one must to employ 

hybrid methods of calculations. A difference in spatial scales leads to the necessity of the application of grids with 

substantially differing scales, since the generation of homogeneous fine grids is not always admissible or justified, 

as, e.g., in the case of the calculation of the radiative heat transfer in the virtually isothermal working space of a 

furnace. 

There exist two main approaches to the solution of problems of combined and conjugate heat transfer. The 

first approach is realized by employing the same method of approximation of various heat transfer equations on a 

common grid. The desired temperatures are defined by solution of a single global system of equations. In [ 1 ], the 

method of large abrupt changes of velocity at a liquid-solid interface has been used to solve the problem of 

conjugate heat transfer. However, a strong abrupt change in the coefficients of the equations reduces the 

convergence rate of iteration schemes. 

Conversely, various methods of approximation of heat transfer equations on different grids are used in the 

second method. The desired temperatures are determined by successive solution of the system of heat transfer 

equations for corresponding processes and geometric regions with fixed source terms, temperatures, and heat fluxes 

on the boundaries of the regions. In the conventional approach to the solution of the problem of conjugate heat 

transfer, the external problem of radiation-convection transfer is solved in the first stage to determine the heat 

fluxes on the boundary. Calculated heat fluxes play the role of boundary conditions for the internal problem of 

conductive heat transfer, from which the temperature values for the external problem are refined [2 ]. Relaxation 

parameters should be used or other precautions should be taken to provide convergence in this approach [2 ]. In 

the zone-node  method, zone-averaged temperatures calculated by solution of nonlinear equations are used for 

calculation of the radiation source terms in energy conservation equations written for a fine finite-difference grid 

[3]. Temperatures and convective and conductive heat fluxes of control volumes are used to form convective- 

conductive coefficients for the zone grid. The need to form coefficient matrices for both grids and absence of a 

diagonal predominance in the convective matrix, which results in slow convergence of iteration schemes [2 ], are 
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Fig. 1. Matching of zonal and finite-difference grids. 

drawbacks of the method. In [5 ] ,  in order to combine the external and internal heat transfer problems for a 

thermally thin body, the temperatures at the nodes of control volumes were expressed in terms of zone 

temperatures. In this case, the matrix of coefficients in the equation of the heat balance loses its diagonal 

predominance. 

In [6 ], an algorithm for solution of a problem the conjugate heat transfer employing the finite-difference 

method for the external problem and the boundary-element methods for the internal one, has been proposed. The 

finite-difference and finite-element grids were coincident on the interface of the regions. Temperature values are 

calculated successively for each region. To ensure convergence, special values of relaxation parameters should be 

chosen. 

In the present work we consider an efficient method for the solution of a problem of combined heat transfer 

which is free of the above-mentioned drawbacks. The method employs simultaneously different-scale grids for the 

zone and finite-difference approximation methods. 

Basic Equations. The calculation of thermal modes of energy technological objects based on the 

approximation of integral heat transfer equations can be reduced to the solution of nonlinear equations written for 

each discrete element of the physical system [2 ]: 

O T  i N 4 N 
PiciVi'-~-+ ~ RiyT / + ~ DijTj+ Si=O, i= 1 ..... N. (l) 

/=1 /=1 

Here Tj are the absolute temperatures of the discrete elements and Si are terms connected with external sources 

and boundary conditions. Coefficients in Eq. (1) can be obtained on the basis of various methods of approximation 

of heat transfer equations. 

The Newton-Rafson method [4 ] is the most efficient approach to the solution of nonlinear equation (1) 

for both the time-inexplicit scheme and stationary formulation, and for a system of nonlinear equations presented 

in vector form 

can be written as 

r ( x )  = 0 ,  

J ( x  t) a X  t+~ = _ f (X t) , 
(2.a) 

Xl+l = X l + AXI+I (2.b) 

where J(X/) is a Jacobian of the vector function f(X): X l is a vector of independent variables, and l is the number 

of iterations over the system of nonlinear equations. As a rule, four to six iterations provide a solution of Eq. (1) 

with accuracy acceptable in engineering calculations. 
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By assuming that the coefficients of Eq. (1) depend only on the temperature of the discrete element for 

which the heat balance equation is written, we present the elements of the Jacobian in the following form: 

= ~ i j A - ~ P i C i +  4e i] (~ j )3  + O i j ~ ( ~ j ) 4 + ~ J + ~ 3 i ]  ViAT O(PiCi~)oZ] ~J" 

The index connected with the time layer is omitted for simplicity. 

In the case of large-dimension problems, the system of linear equations (2a) is efficiently solved by an 

iteration method. Methods of conjugate directions with preconditioning [7-10 ] provide good results in this case. 

Figure 1 presents portions of regions where heat transfer is realized by radiation, conduction, and 

convection. The radiative heat transfer was calculated by the zone method on a sparse zonal grid (shown by thick 

solid lines in Fig. 1). The approximation of heat fluxes due to the other two processes is carried out by the 

finite-difference method on a fine grid. The conditions of coincidence of the grids are as follows: the volume zone 

includes an integer number of control volumes, and the surface zone covers faces of an integer number of control 

volumes. Zones and control volumes are numbered by indices m, n and i, j, respectively. Inasmuch as there is no 

substantial difference in the coincidence of surface and volume zones with the grid of control volumes, we will 

consider in what follows only the case of coincidence of the volume zone. Let us denote the set of numbers of control 

volumes entering into the n-th zone as Nn = {il, i2 ..... ikn}. For simplicity, we will consider a stationary formulation 

of the problem. By using assumptions of the resolvent zone method, one can present the radiation heat flux of the 

n-th zone as follows [2 ]: 

Nz - -  4 ( 3 )  
Q R =  E R n m T m  " 

m = l  

By approximating the conductive and convective heat fluxes of the control volume entering into the n-th 

zone using the finite-difference method, we generally obtain [1 ] 

N 

Q ? =  E Di]T], iGNn"  (4) 
]=1 

Let us write the heat balance equation for the n-th zone 

C.+ E ..v s,=o, 
iEN n i~N n 

where Sn are source terms and boundary conditions in the problem of radiative heat transfer, and Si are source 

terms in the problem of conductive-convective transfer not included in S n. Substituting (3) and (4) into (5), we 

obtain 

Nz -- N 
4 

E RnmTm + E E Di jT j+Sn + E Si=O" 
m=l iGN n j=l iEN n 

(6) 

Then we transform the second term in expression (6): 

N N N N i 

E E Dijrj= E E , , j r j= E d.jrj= E d.jrj+ E D, rj. 
iEN n ]= 1 ]= 1 i~N n ]= 1 ]EN n ]= 1, ]~N n 

(7) 

When a first-order finite-difference scheme is used for diffusion heat fluxes and a counterflow scheme is 

used for convective heat fluxes, only the coefficients for the elements situated on the boundary of the n-th zone 

enter into expression (7). The first and second terms on the right-hand side of (7) include the temperatures of the 
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boundary control volumes of the n-th zone and those of the control volumes of the immediate vicinity of the n-th 
zone, respectively. 

Equation (6) is a beat balance equation for volume zone. Let us assume that the temperatures of the nodes 

of the control volumes entering into the n-th zone are equal. Then, taking into account that the temperature 7"] in 

the first term of (7) is replaced by T n, we have 

N N 

iEN n ]= 1, ]q~N n ]~N n j= 1, ]q~N n 

If the temperatures of the nodes of the control volumes from Nn are not equal, equation (8), speaking strictly, is 

not satisfied in the nonlinear problem. 

By introducing the following notation 

S n =  Sn + ~ St .  
iGN n 

we present Eq. (6) with regard for (7) and (8) as follows: 

Nz --4 N N 
R n m T m + ' T n  X DI]+ ~_~ O ; T T j + S ' n = O  , n =  1 . . . . .  N z. 

m= 1 ]~N n j= 1, jq~N n 
(9) 

Let us write the heat balance for the i-th control volume entering into the n-th zone: 

+ s i = o ,  i e N n .  
(10) 

Let us assume that the volume density of the resulting radiation heat flux is uniform within the selected zone. Then 

one can write 

N Z 
Vi R Vi ~, R r 4 Vi e =Ke. ,. 

where Sn is the source term of the n-th zone different from sources S i. Then 

N z -- N z -- 

=m=l Tm -6 -~n Sn -6 R'nn T : -6m=l,Zm~:nR ;m Tm -6 ~n  Sn" 

Now, again, assuming that the temperatures of the nodes of all control volumes entering into a single zone 

are equal, we replace temperature Tn by the temperature of the control volume Ti. Then equation (10) with regard 

for the substitution S'i = Si + SnVi /Vn is as follows 

Nz N 
X R'nm - 4  R'nn T4 -6 Z Dij -6 T m + Zj S I = 0 ,  i E N n  " (11) 

re=l, m#n /=1 

Modified equations (9) and (11 ) are included in a global system of coupled nonlinear heat balance equations 

(1), which is then solved by the Newton-Rafson method simultaneously for the temperatures of the control volumes 

and the zone temperatures, which are independent variables. To solve linearized equation (2a), any iteration 

method of conjugate directions with preconditioning would be appropriate. The GMRES and TFQMR methods [8, 

9 ] have been found to work well in this case. 

Test Problem. As a test of the scheme proposed, we consider the problem of evaluation of heat fluxes and 

temperature fields in a water-cooled roller of a sectional furnace which frequently arises in practice. A typical 

configuration of a roller situated within a furnace section is presented in Fig. 2a. Under certain assumptions, the 
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Fig. 2. Typical configuration of roller in working space of furnace (a) and 

corresponding axisymmetric model (b); curves, isolines of the field of relative 

temperatures: 1) O -- 0.5; 2) 0.4; 3) 0.25; 4) 0.1; Sn -- 0.01; Bi -- 2; St -- 0.2. 

problem of calculation of the temperature field in the roller can be reduced to an axisymmetric problem of conjugate 

heat transfer with the geometry shown in Fig. 2b. The roller is heated due to the radiation from the furnace lining 

with temperature Tlng, and is cooled by a liquid entering its internal channel with initial temperature Tin - 0 K. 

The convective heat transfer in the working space of the furnace was not taken into account. The solution of the 

problem is a function of the three dimensionless Stanton, Biot, and Stark numbers: 

S n - p - ~ v ,  B i =  , S t =  

The roller was divided into control volumes. The conductive heat transfer was approximated by the finite-difference 

method. The internal channel of the roller was also divided into control volumes along the radial direction. The 

heat transfer due to the motion of the cooling liquid was approximated by counterflow differences. The radiative 

heat transfer was calculated by the zone method. On a portion of the roller surface situated within the working 

space of the furnace, surface areas were selected each of which covered an integer number of neighboring control 

volumes. The free surface of the roller not exposed to the working space of the furnace and not belonging to the 

internal channel was considered to be adiabatic. 

To estimate an accuracy of the coupled scheme proposed, we obtained a provisionally exact solution of the 

problem of conjugate heat t ransfer .  Heat fluxes due to radiation, heat conduction, and convection were 

approximated on a fine grid. A single surface zone was put in correspondence with each face of the control volume 

situated in the working space of the furnace. The temperature of this surface zone was identified with that of the 

corresponding control volume. Unknown temperatures were calculated by solution nonlinear heat-balance equation 

(I) written for the stationary case. Isolines of the calculated relative temperature O = T(x, Y)/Tlng are presented 

in Fig. 2b. 

Figure 3a presents a dependence of the maximum relative error of the calculation of the heat flux on the 

gas-sol id interface for the coupled scheme as a function of the value of the parameter St. The error was calculated 

with respect to heat fluxes of the provisionally exact solution Q* 

~Q = max I(Q - Q*)/Q*I " 100%. 

Three cases were considered when a single surface zone covered faces of 4, 8, and 40 neighboring control volumes 

(CV) situated on the roller surface. 

Figure 3b presents a dependence of the maximum relative error with respect to the temperature and heat 

flux as a function of the number of control volumes n whose external faces were included in the surface zone. The 

error was calculated with respect to the temperature of the provisionally exact solution T*(x, y) 
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Fig. 3. Dependences of 6Q (%) on St (a); 6Q and 6T (%) on the number  of 

control volumes covered by a single zone (b): a) Sn = 0.01; Bi -- 2; b) Sn = 

0 .01;  Bi = 2; St = 1. 
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Fig. 4. Comparison of convergence rates of two computational schemes under  

the condition that a single zone covers faces of four control volumes: a) time 

necessary to reduce the discrepancy of Eq. (1) by a factor of 10 6 as  a function 

of St; b) dependence of relative discrepancy of Eq. (1) on the number  of 

iterations over the linearized system: 1) coupled scheme; 2) f ixed-boundary-  

condition scheme; a single zone covers faces of four control volumes: a) Sn -- 

0.01; B i - -  2; b) S n  = 0 .01 ;  Bi = 2; St = 0 .2 .  

6 T = max [ (T (x, y) - T* (x, y))/T* (x, y)[ - 100% . 

Figure 4a presents results of a comparison of the convergence rate for the two methods of solution of the 

test problem. Each surface zone covered faces of four control volumes. Heat balance equations were written for the 

stationary formulation. The  temperature  distribution was calculated by the following two methods.  In the first 

method, a conventional algorithm was used in which the external and internal heat t ransfer  problems were solved 

successuvely with use of the temperature and heat flux conjugation conditions on the boundary.  In what follows, 

we will refer  to it as the fixed boundary-condit ion scheme. 

In the second case, the coupled computational scheme (1), (2), (9), (11) was t,sed. The  system of linear 

equations in both cases was solved by one of two variants of the quasiminimum discrepancy method (TFQMR) with 

the ILU preconditioning [7, 8 ]. The  solution was considered to be found if the length of the discrepancy vector 

decreased by a factor of 106. The computational experiment  was carried out on an IBM-compatible personal 

computer equipped with a 130-MHz Pentium processor. 

Figure 4b shows the dependence of the length of the relative discrepancy vector $ = I f (T)  I / (aFT~lng) on 

the iteration number  Niter for the two above schemes. 

A computational experiment has shown the acceptable accuracy and high convergence rate of the coupled 

scheme proposed in the present work. In the coupled scheme, the error  of the calculation of heat fluxes on the 

boundary  depends on the temperature jumps between nodes of control volumes entering into a single zone. An 

increase in the jumps is observed with an increasing number  of control volumes covered by a single zone, and for 
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small St numbers (Fig. 3). When St > 0.5, the temperature jump on the roller surface decreases in the working 

space. Therefore, the relative error of calculations weakly depends on the St number. 

Despite the fact that the method proposed does not provide a gain in the convergence rate at small St 

numbers, it guarantees the solution of problems where conventional schemes break down or require the special 

choice of relaxation parameters. In this case, the convergence rate of the coupled scheme weakly "~epends on the 

parameters of the problem (Fig. 4a). In the given example, the gain in time required for solution of the problem 

observed for the fixed boundary conditions scheme for St < 0.1 compared to the coupled scheme stems from the 

fact that the former one is not connected with the solution of a system of nonlinear equations, since the lining 

temperature is considered to be given. 

Conclusion. The coupled scheme for the solution of the nonlinear problem of combined heat transfer 

proposed in the present work has a series of advantages. In addition to the possibility of employing the advantages 

of the zonal and finite-difference methods and different-scale grids, which is important in the solution of practical 

problems, this scheme does not involve the use of relaxation parameters or other special means to provide 

convergence of the iteration procedures. 

The inclusion of equations written for various grids in a global system of equations is based on a purely 

algebraic transformation of the coefficients obtained for the original grids. As a result, there is no need to form 

coefficient matrices separately for both sparse and fine grids. Although an increase in the number of nonzero 

elements of the global matrix of the linearized system is observed with respect to original matrices written separately 

for different grids, the filling of the matrix remains substantially lower than in multigrid methods, where, to 

calculate radiative heat transfer on a fine grid, one must solve a system with a virtually completely filled matrix 

[11]. 

We have developed a method for solution of a nonlinear problem of combined heat transfer which can be 

efficiently used in systems for computer-aided design of thermal modes of actual energy-technology objects by 

power engineers who are not necessarily experts in computational methods. 

N O T A T I O N  

p, density; c, specific heat; V i, volume of the i-lh control volume; Vn, volume of the n-th zone; v, velocity 

of motion of cooling liquid; or, the Stefan-Boltzmann constant; r, time; F, area of lining surface; Sn, Stanton 

number; Bi, Blot number; St, Stark number; Tj, absolute temperature of nodes of control volumes; Tin, average 

zone temperatures; Rip coefficients approximating radiative heat transfer; Dij, coefficients approximating conductive 

and convective heat transfer; QR, resulting radiation heat transfer; QD, resulting heat flux due to heat conduction 

and convection; 6ij, the Kronecker symbol; a, coefficient of convective heat transfer from fluid to roller; h, average 

thickness of roller; 2, heat conductivity of roller material; 6Q, relative error of evaluation of resulting heat fluxes; 

6T, relative error of evaluation of temperatures; 6, length of relative discrepancy vector in test problem; rp, time 

required for solution of test problem with specified accuracy; O, relative temperature; Tlng, lining temperature; Tin, 

temperature of cooling liquid at entrance to internal channel of roller; N, total number of discrete elements in 

system; Nz, number of zones; Nn, number of indices of control volumes entering into the n-th zone; Niter, number 

of iterations in solution of test problem. 
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